lemÌc. Lemizh grammar and dictionary

Unit 7. Numerals I

An Englishman, even if he is alone, forms an orderly queue of one.

(George Mikes. How to be a Brit)

Numbers

Lemizh uses the hexadecimal system, the numeral place-value system with a base of 16. The 16 digits and three additional symbols, along with their names, are:

VerbGlossDigitKeyboardTranscriptionValue
nà.not0000
rà.one1111
dwà.two2222
trà.three3333
gwàq.four4444
pnà.five5555
swàh.six6666
qàf.seven7777
xtà.eight8888
nàh.nine9999
dàh.tenAAA10
omàj.elevenBBB11
frà.twelveCCC12
àc.thirteenDDD13
àb.fourteenEEE14
gcà.fifteenFFF15
VerbGlossSymbolKeyboardTranscriptionMeaning
kà.opposition__ (underscore)negation (minus)
pointà.point,,,hexadecimal separator
recurringà.recurring##r (for ‘recurring’)beginning of the recurring part

Now we can write numbers; but 63 is not a grammatical entity and so cannot be part of a sentence.

Numbers in grammar

The definite numeral verbs up to fifteen are shown in the table above. They denote the actions ‘make/become one individual, make/become two individuals’, etc. With an inner dative, we have ‘something made into one/two individual(s)’, with an inner accusative – and this is again the most useful case – ‘individual(s) with the property of being one/two’. In other words, the number of objects behaves just like a property, and numerals are adjectival verbs: rÌjd. is a red thing or red things, swÌh. are six things. swÌh. can also be written 6Ì. for short.

Numeral verbs imply making/becoming a number of individuals one after the other, as opposed to making them simultaneously. This has no effect on the inner accusative because the property of being a certain number of individuals is independent of how they came into existence; we will, however, need this subtlety in the chapter on ordinal numerals in the next unit.

There is no generally applicable definition of an individual, especially as Lemizh grammar does not distinguish between countable and uncountable (mass) words: two individuals of rice are just as acceptable as two individuals of peas, or two individuals of sneezing. We can even speak of an individual of water if context allows. Think of a body of water, or the film ‘The Abyss’. An individual need not even be coherent: a counterexample would be an ant colony.

Of course there still are discrete things, which cannot be divided without losing their identity (a person, an ant colony, a sneeze), and continuous ones for which this isn’t generally a problem (a queue, water, walking). There are also intermediates; half a grain of rice is still rice in terms of food (although not much of it), but not in terms of the plant’s reproduction. A nightly hour can still be called ‘night’ if we don’t focus on the entirety of a night – say, sundown till morning – but on the state of the sun being down. (A good question is whether something functions as a unit in the given context.) The point of all this is that the concept of an individual can also be applied to continuous things.

Multidigit numbers

To form numbers larger than fifteen, we need four verbs expressing exponential numbers.

VerbGlossValue
ràj.1616
skmà.256162 = 256
jàs.4096163 = 4096
mràj.65536164 = 65,536

Round numbers are multiples of an exponential number. We achieve multiplication by forming abstract nouns from numbers – e.g. sevenìl. ‘the consequence of making seven, seven-ness’.

  rÌj qìlfy. qilfrÌj.sixteen consequences of making seven individuals; sixteen seven-nesses70hex = 112
sixteen-acc1 seven-cons-acc2. seven-cons-sixteen-acc1.
07Ì.(written short form, pronounced the same as above)
112-acc1.

Note how the epenthetic consecutive acts as a multiplication. Just to make the point clear: **rÌj sevenÌy. is nonsensical because it would mean ‘the sixteen are seven’. This difference between consecutive and accusative in the context of numerals is actually the same as the abstract/concrete distinction we met in the chapter on negators in the previous unit.

Other numbers are expressed as sums of round numbers. They are added up with a partitive ‘and’.

  This example shows a number as a nominative object:
— gcynè skmÌne.10Fhex = 271
… fifteen-partacc-nom2 256-partacc-nom2.
— F01Ìe.
… 271-acc-nom2.

Sometimes it is useful to conflate such numbers into a single object via mà.-desporption.

  gcynÌ skmÌny.271
make-acc1 fifteen-partacc-acc2 256-partacc-acc2.
F01Ì.
271-acc1.

The convention for round numbers is to place the exponential number as the modifier of the compound. This demotes it or – so to speak – reduces its visibility, just as the exponent is invisible in digit notation. The digit, being the more salient part (visible in digit notation), is placed as the head. English and other languages do something similar in words such as ‘fourty’. This convention is also in line with the negative numbers below, negated and weighted adjectives, and similar constructions.

Larger numbers

Numbers from 165 upwards include a multiple of 65536Ì., e.g. 13,010Fhex = 10Fhex + 1,0000hex × 13hex. Compounding of the multiple is impossible if it is constructed with partitive ‘and’.

  mrÌj rìljy. riljmrÌj.10,0000hex = 1,048,576
65536-acc1 16-cons-acc2. 16-cons-65536-acc1.
— gcynè skmynè mrÌnje trilnÌ rìlnjy.13,010Fhex = 1,245,455
… fifteen-partacc-nom2 256-partacc-nom2 65536-partacc-nom2 three-partcons-acc3 16-partcons-acc3.

Mathematical functions; very large numbers

A mathematical function acts on a number, which makes this number (in terms of the Lemizh plot) the dative object. The result of the function is the accusative object, just as the lace is the result of the beaver’s action: squarerootÌ twoÌi. is the square root of two. Functions with two arguments have one of them in the dative and one in the nominative, as with powerÌ 8yì 4Ìe. ‘the content (=result) of 4 exponentiating 8; the 4th power of 8; 84 ’. This distribution of cases might be a bit arbitrary, but then it was introduced by mathematicians and is not part of the natural grammar.

Based on this consideration, the verb powerà 65536Ìi. 65536Ì powerìy. poweri65536à. ‘raise 65,536 to some-nom power’ is used to form new exponential numbers.

  powerimrÌj dwÌe.1,0000,0000hex = 4,294,967,296
power-dat-65536-acc1 two-acc-nom2.
— rÌne powerimrÌnje dwyè rìljy.10,0000,0001hex = 68,719,476,737
… one-partacc-nom2 power-dat-65536-partacc-nom3 two-acc-nom4 16-cons-acc4.

Negative numbers

Negative numbers are formed with the opposition negator kÌ..

  kÌ frìly. frilkÌ.the opposite of twelve-ness
−1 consequences of making twelve individuals
−12
opposition-acc1 twelve-cons-acc2. twelve-cons-opposition-acc1.

The use of the epenthetic consecutive should remind you of the consecutive we have been using for multiplication, and also of the use of negators with adjectives. You can think of frilkÌ. as ‘12 × −1’ with the consecutive as the multiplication sign and kÌ. as −1 (just as sevenilrÌj. was ‘7 × 16’). Generally speaking, the consecutive case is necessary whenever both verbs define certain quantities, as with numerals (including the negators nÌ. = 0 and kÌ. = −1). Another example will follow in the next unit.

Again, compounding is impossible if the number is constructed with a partitive ‘and’.

Indefinite numerals

VerbGlossValue
mlà.severalmore than one individual
Rà.eacheach (separate, respective) individual

The indefinite numeral verbs work like the definite numerals save they don’t specify certain numbers. mlà. is the super-category verb for all definite numerals larger than one. We have already learned Rà. when we were talking about reflexive and reciprocal pronouns in the previous unit.

Fractions

We express fractions along the lines of ‘seven of nine each’.

‘seven each’ is translated with a multiplication consecutive – eachÌ sevenìlyn. sevenileachÌ. ‘each of the seven-nesses’ – as eachÌ sevenÌyn. would mean ‘each of the seven individuals’. The inner accusative is reinstated by compounding to express seven individuals each (as opposed to the abstract concept of seven-ness). Finally, ‘of nine’ needs another partitive bracket.

A number with a hexadecimal separator can be expressed as a fraction with an exponential number in the denominator. Numbers with a recurring part also are often simpler expressed as fractions, but with a non-exponential denominator.

  qilfRÌ nÌhyn.7⁄9; 7 divided by 9
seven-cons-each-acc1 nine-acc-partacc2.
trilRÌ rÌjyn.0.3hex = 3⁄16
three-cons-each-acc1 16-acc-partacc2.
xtilRÌ pnÌyn.1.9̄hex = 1.6 = 8⁄5
eight-cons-each-acc1 five-acc-partacc2.

We do not need to compound the object ‘nine’ with eachÌ. – it already refers to each of the seven-nesses separately.

Grouping numerals

VerbTranslation
Inner factiveInner accusativeInner dative
groupà.to groupa groupsomething grouped
sortà.to sort, to group according to typea sort, a typesomething sorted
krÌj.to form an ensemble (a group that is meaningful or useful as a whole)an ensemblesomething forming an ensemble

groupà. is the topmost grouping numeral in terms of the semantic tree; sortà. and ensembleà. denote sub-categories. Further sub-category verbs include ‘crowd’ and ‘queue’. Grouping numerals combine a number of individuals (in the dative) to form a ‘super-individual’ (the accusative: groups, sorts or ensembles). The plot resembles that of the verb ‘divide’. The groups, sorts or ensembles can be counted just like ordinary individuals.

There is no rule limiting the number of combined individuals, so a ‘group of people’ can comprise a single person or even none at all.

  personÌ groupìy. groupÌ personÌi.grouped people a group of people
person-acc1 group-dat-acc2. group-acc1 person-acc-dat2.
trÌ groupìy. groupÌ trÌi.three grouped a group of three
three-acc1 group-dat-acc2. group-acc1 three-acc-dat2.
groupÌ trÌy.three groups
group-acc1 three-acc-acc2.
  Sentences with a grouping numeral as main predicate:
sortà umbrellayì colourÌy.(the umbrellas are sorted, the sorts are coloured things)He sorts the umbrellas by colour.
sort-fact1 umbrella-acc-dat2 colour-acc-acc2.
sortà umbrellayì wyncgÌ lÌnxwy.He sorts the umbrellas into black and green ones.
sort-fact1 umbrella-acc-dat2 black-partacc-acc2 green-partacc-acc2.
arrangeà umbrellaweighÌy.He sorts/arranges the umbrellas by weight.
arrange-fact1 umbrella-acc-dat2 weigh-acc-acc2.

The umbrellas in the last example are not ‘sorted’ (grouped into distinct types) but arranged into a continuous row, hence the different main predicate.

Weighting numerals

These verbs are like definite numerals except they describe more vague quantities such as ‘make/become much, quite a lot, a bit’ etc. In the following table, some translations in the durative and extensive columns have been omitted as the table is far too complicated anyway. It shouldn’t be difficult to substitute the missing items, as well as translations for the remaining cases. The topmost weighting numeral is amountà..

VerbGlossRelative weightApproximate translation with inner accusative and various outer cases
Plot casesTemporal (aR)Durative (yR)Locative (ar)Extensive (yr)
amountà.amountundefinedsome amount, some quantity (including zero)some amount of timefor some time/durationin some number of places, in some areawith some extent
nà.not0none, nothingnevermomentarynowherepunctiform
càwb.1⁄81⁄8 approx.hardly any(thing)hardly everhardly anywhere
crà.1⁄41⁄4 approx.few, little, a bitseldomfor a short time/durationin a few places, in a small areawith a small extent, over a small area
Ràbv.3⁄83⁄8 approx.some, a fairly small number/amountsometimesin some places, in a fairly small area
bvà.1⁄21⁄2 approx.a medium number/amounta medium number of times, a medium amount of timein a medium number of places, in a medium-sized area
dmàj.5⁄85⁄8 approx.quite a lotquite oftenin quite a number of places, in a fairly large area
dmà.3⁄43⁄4 approx.many, muchoften, much of the timefor a long time/durationin many places, in a large areawith a large extent, over a large area
xpàj.7⁄87⁄8 approx.almost every, nearly allnearly alwaysnearly everywhere
jnà.1⁄11every, all, the wholealwaysalwayseverywhereeverywhere

The weights given in the table only describe relations to the other weighting numerals. 1/2Ì. is not necessarily half the amount (or, as for that, it is not necessarily any portion of a given quantity, as this is the domain of the partitive), but at any rate more than 3/8Ì. and less than 5/8Ì..

  sràq cÌwbaR. càwb sràRqy. sraRqcàwb.He hardly ever queues.
queue-fact1 1/8-acc-temp2. 1/8-fact1 queue-temp-acc2. queue-temp-1/8-fact1.

Weighting numerals do not have a singular or plural connotation. 3/4Ì. can not only mean a large amount of water, a long time, a large space and so on, but also a large number of things, times, places, etc. To distinguish ‘much’ and ‘many’, we can use compounds from brackets with the definite numeral rÌ. ‘1’ and the indefinite numeral mlÌ. ‘several’, respectively. The latter needs a partitive to express ‘many of the (several) individuals’, as opposed to a cumulative bracket, which simply denotes a large quantity that consists of several individuals (which could also be satisfied by, say, a small number of large areas).

  rÌ dmÌy. dmyrÌ.much, a large amount, much space or time, etc.
one-acc1 3/4-acc-acc2. 3/4-acc-one-acc1.
rÌ jnÌy. jnyrÌ.the whole (thing, amount, space, time, etc.)
one-acc1 1/1-acc-acc2. 1/1-acc-one-acc1.
dmÌ mlÌyn. mlÌ dmÌny. dmynmlÌ.many (individual) things, places or times, etc.
3/4-acc1 several-acc-partacc2. several-acc1 3/4-partacc-acc2. 3/4-partacc-several-acc1.

Brackets of weighting numerals with grouping ones are also useful, with inner accusative and dative of the latter expressing different relationships between the two. Cumulative brackets of weighting numerals with any other kind of word can be ambiguous, so partitive brackets are needed again. The next unit will bring more examples of such brackets.

  crÌ groupÌy.they are few / it is a little, and they are groupsa few groups; a small group (a bit, which is a group)
1/4-acc1 group-acc-acc2.
crÌ groupÌyn.a few (of the) groups
1/4-acc1 group-acc-partacc2.
crÌ groupìy. groupÌ crÌi.a few things grouped a small group
1/4-acc1 group-dat-acc2. group-acc1 1/4-acc-dat2.
crÌ groupìyn.a few of the grouped thingsa few / little of a group
1/4-acc1 group-dat-partacc2.

Zero

nà., the nonexistence negator and definite numeral zero, is also a weighting numeral. For a reason discussed in unit 9, the so-called inversion ban for negators, it is mostly used as a predicate.

  The ‘uninverted’ forms are omitted in the following examples since **queueà nÌaR. would violate inversion ban.
queueàRy. queueaRnà.He never queues.
not-fact1 queue-temp-acc2. queue-temp-not-fact1.
queueìy. queueinà.Nobody is queuing.
not-fact1 queue-dat-acc2. queue-dat-not-fact1.
queueanàRy.He never does not queue.He does nothing but queue.
not-fact1 queue-fact-not-temp-acc2.

Exercises

  Translate, optionally using a pocket calculator. Spell out the numbers:
48Solve
−60Solve
1,000,000Solve
1⁄17Solve
  Translate:
The crowd of tortoises isn’t seen anywhere.Solve
Achilles is queuing quite often.Solve
3/4Ìir.Solve
1/8ÌOl.Solve
— nÌiR.Solve

Last significant change: 7 Jul 2015

Creative Commons BY-NC-SA LicenseCheck HTML 5 Check CSS 3
See Terms of use for details on licensing.